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Abstract: Dynamic fluorescence molecular tomography (DFMT) is a promising molecular
imaging technique that offers the potential to monitor fast kinetic behaviors within small animals
in three dimensions. Early monitoring of liver disease requires the ability to distinguish and
analyze normal and injured liver tissues. However, the inherent ill-posed nature of the problem
and energy signal interference between the normal and injured liver regions limit the practical
application of liver injury monitoring. In this study, we propose a novel strategy based on time and
energy, leveraging the temporal correlation in fluorescence molecular imaging (FMI) sequences
and the metabolic differences between normal and injured liver tissue. Additionally, considering
fluorescence signal distribution disparity between the injured and normal regions, we designed a
universal Golden Ratio Primal-Dual Algorithm (GRPDA) to reconstruct both the normal and
injured liver regions. Numerical simulation and in vivo experiment results demonstrate that the
proposed strategy can effectively avoid signal interference between liver and liver injury energy
and lead to significant improvements in morphology recovery and positioning accuracy compared
to existing approaches. Our research presents a new perspective on distinguishing normal and
injured liver tissues for early liver injury monitoring.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Liver cancer is the fourth most common cause of cancer-related death worldwide and imposes
a heavy disease burden on humanity [1]. Clinical studies have demonstrated that liver injury
serves as an initial stage of liver cancer and is the most common identifiable cause of acute liver
failure. Therefore, early monitoring of liver injury regions plays a crucial role in the diagnosis
and treatment of liver cancer [2]. Currently, several imaging techniques, including transient or
shear-wave elastography, perfusion or dual-energy computed tomography, and contrast-enhanced
magnetic resonance imaging [3], are employed in clinical practice to monitor liver injury [4].
However, limitations such as low repeatability, inaccurate imaging, radiation exposure, and
requirement of specialized equipment severely hinder the practical application of these imaging
techniques [5]. Conversely, fluorescence imaging/tomography has garnered considerable attention
for liver injury monitoring and evaluation owing to its excellent performance, non-radiation
exposure, high sensitivity, high specificity, and cost-effectiveness [6]. In particular, dynamic
fluorescence molecular tomography (DFMT) provides a new potential approach for monitoring
liver injury by imaging the temporal distributions of fluorescent probes and real-time quantitative
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analyses of the different metabolic properties of the fluorescence agent in normal and injured
liver at the cellular and molecular levels [7–9].

As an application extension of FMT, DFMT employs efficient source reconstruction methods
to recover the distributions of fluorophore concentrations at different time points. Integrating
pharmacokinetics and analytical methods with DFMT is a suitable approach that can aid in in vivo
analyzing, predicting, and monitoring liver cancer. Over several decades, DFMT has established
a solid foundation in imaging theories and algorithms, benefiting from the advancements made in
FMT. Several FMT-based methods that use photon propagation models and inverse reconstruction
algorithms can be directly applied to DFMT. The radiation transport equation (RTE) is an ideal
photon propagation model that can theoretically describe light propagation in turbid media
in DFMT [10]. However, due to its high computational costs, simplified models, such as
diffusion equation theory (DE) [11], spherical harmonics (SPN) method, and hybrid models are
commonly employed to solve the approximate problem [12]. In terms of inverse reconstruction,
numerous effective regularization methods have been proposed for recovering the distributions of
fluorophore concentrations [13] by considering the ill-posed nature of the inverse problem caused
by the strong scattering property of biological tissues. Different probability distribution models
are used for analyzing the measured noise, and typically, L2-norm (Tikhonov method) [14],
L1-norm (Lasso method) [15], and Lp-norm (0<p<1) (non-convex method) [16] regularization.
These extensive studies on theories and algorithms have significantly contributed to enhancing
the accuracy and efficiency of FMT and have laid a solid theoretical foundation for DFMT.

Furthermore, with the development of imaging systems and dynamic fluorescent data acquisition
strategies, DFMT has been utilized to resolve kinetic behaviors and dynamic physiological
processes. In a hybrid FMT and X-ray computed tomography (XCT) system, the imaged
object is continuously rotated to capture multiple circles of images, enabling the investigation
of the pharmacokinetic rate of indocyanine green (ICG) in mouse liver [17]. To perform
pharmacokinetics analyses using dynamic diffuse fluorescence tomography (DFT), a fiber-based
dynamic DFT system was previously proposed for acquiring ICG tomographic image sequences
using a square-wave modulation lock-in photocounting scheme and series-parallel measurement
mode [18,19]. These imageing systems exhibit high sensitivity, high anti-ambient light ability, and
cost-effectiveness. In addition, various methods have been explored for dynamic data processing.
Recovered charge-coupled device (CCD) response curves are used in high-dynamic-range FMT
(HDR-FMT), which are based on the multiple-exposure scheme, to enhance the dynamic range
of FMT projection images [20]. Additionally, Liu et al. proposed a new assembling method
by re-assembling the projections from two nearby circle scans while eliminating the temporal
correlations within the fluorescence projection sequence [17]. These proposed dynamic data
processing methods enhance the reconstruction quality and reduce the frame and reconstruction
intervals in dynamic FMT imaging. Further, the frame-by-frame reconstruction approach and
spatial-temporal image reconstruction methods are commonly used for image reconstruction in
DFMT. Typically, in DFMT, images are obtained by independently and sequentially reconstructing
the frames of a time sequence [7]. Although this method is straightforward and simple, it neglects
the temporal correlations in the measured data, resulting in poor reconstruction quality and a
reduced signal-to-noise ratio (SNR) [21,22]. To address this limitation, Liu et al. proposed
an independent component analysis (ICA)-based method for dynamic fluorescence diffuse
optical tomography (D-FDOT) imaging. This approach is suitable for imaging functional
structures with different kinetic behaviors and provides associated time-course datasets [23].
Additionally, spatial-temporal image reconstruction methods, in which the reconstruction process
of fluorescence concentrations is integrated with dynamic compartment models into a single
step, have been proposed. These methods leverage the inherent temporal correlations in dynamic
near-infrared (NIR) measurements and incorporate spatial-temporal a priori information into
pharmacokinetic-rate images, enabling the imaging of pharmacokinetic parameters in small
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animal organs [24]. These advanced technologies effectively improve the reconstruction quality
and localization accuracy of fluorescent targets with large concentration differences, enabling the
in vivo resolution of fast kinetic behaviors within small animals.

However, most previous studies on DFMT focus on pharmacokinetic parametric imaging. In
the context of liver injury monitoring, it is focused on improving the low spatial resolution, which
is caused by the inherent ill-posed nature of the problem, and overcoming signal interference
between the liver and injured region remain challenging. To effectively distinguish normal and
injured tissues in liver and monitor liver injuries from an early stage, we propose a difference
strategy based on time and energy, aiming to accurately reconstruct the normal liver tissue and
injured region. Firstly, considering the temporal correlation of sequence FMI, we propose a
reconstruction strategy based on time difference, which effectively overcomes the interference
between signals from the injured and normal regions, allowing accurate morphological recovery
of the liver. Secondly, taking into account the differences between the metabolic characteristics
of normal and injured liver in biological tissues [7,25], an energy difference strategy is employed
to reconstruct the injured liver region. By considering the distinct distribution of fluorescence
signals between the injured and normal regions, we developed a universal golden ratio primal-
dual algorithm (GRPDA), which solves two distinct optimization models. Using this proposed
algorithm, we can recover the morphologies of the liver and sparse injured region. To validate
the effectiveness of the proposed time-energy difference strategy (T-EDS), both simulation and in
vivo experiments were conducted. These experiments demonstrated that both normal and injured
liver tissues can be clearly reconstructed using the proposed T-EDS; the reconstructed energy
changes were were consistent with the metabolic laws, and the method exhibited few artifacts
while achieving a high degree of morphological recovery. Furthermore, the imaging results were
verified in vivo by comparing with the vitro anatomy, further validating the effectiveness of the
difference strategy.

2. Materials and methods

2.1. DFMT inverse reconstruction model

For the DFMT, coupled Diffusion Equations (DEs) are used to describe the light propagation in
the forward problem [11], as shown in Eq. (1).⎧⎪⎪⎨⎪⎪⎩

∇ · [Dx(r)∇Φx(r, t)] − µax(r)Φx(r, t) = −Θδ (r − rs, t) (r ∈ Ω)

∇ · [Dm(r)∇Φm(r, t)] − µam(r)Φm(r, t) = −Φx(r)ηµaf (r, t) (r ∈ Ω)
(1)

where Ω and δ(r) represent imaging region and the Dirac function, respectively, and Θ is a
calibration factor, which accounts for the unknown gain of the FMT system. The subscripts x and
m indicate the excited and emitted progressing, respectively. ηµaf (r, t) represents the unknown
fluorescence yield distribution to be reconstructed. According to the finite element discretization
[26], the coupling equations defined in Eq. (1) can be formulated as

AX(t) = Bt (2)

where A is the system matrix determined by the optical properties of the excitation and emission
process, X(t) denotes the unknown internal distribution of the probes, and Bt represents the
measurements of surface photon distribution.

In the DFMT, the system matrix A represents the relationship between the fluorescence
distribution and measured surface photon distribution. During the light propagation progress, it
remains stable at each time point. However, during the data acquisition process, the surface photon
distribution B varies over time due to factors such as changes of the fluorophore concentration or
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position of the fluorescence source. Based on the above objective analysis, the linear model for
DFMT is formulated as

A [X (t1) , . . . , X (tk)] = [B1, . . . , Bk]
T (3)

where tk = (1, . . . , K) represents the time point, and X (tk) is the unknown internal distribution of
the probe at the k-th time point.

2.2. Time-energy difference strategy for Liver injury monitoring

The proposed method focuses on monitoring liver injury. This study applied it to both normal and
injured tissue present in mouse liver. Considering the isotropic transport characteristic of light in
the liver, the concentration of fluorophore is defined as a linear combination of the concentration
distributions in the liver region and injury region.

X (tk) = Xliver (tk) + Xinjure (tk) (4)

Furthermore, the measured signal is considered as a combination of the signal produced by the
specific probe in the normal and injured tissue. According to the linear model of DFMT defined
in Eq. (3), the combined measurement of the surface signal is as follows:

B (tk) = Bliver (tk) + Binjure (tk) = A
[︁
Xliver (tk) + Xinjure (tk)

]︁
(5)

During the metabolism of ICG in mice, the time-varying fluorophore concentration X (tk)
caused by metabolism of normal and injured liver tissue is described by a bi-exponential
model using compartmental modeling. The regions of the liver and liver injury concentration
distributions at time t are defined as follows:

X = −A(r) exp(−α(r)t) + B(r) exp(−β(r)t) (6)

where the parameters A(r), B(r),α(r) and β(r) are pharmacokinetic parameters describing the
uptake and release of fluorophores [24]. Both drug-induced and disease-oriented liver injury
result in a slower metabolization rate of organismal organs compared to the normal case [27].
Thus, the uptake of fluorophore and uptake rate of liver α(r)liver are greater than that of liver
injury α(r)injury . Moreover, during the fluorophore excretion, the excretion rate of liver β(r)liver
is greater than that of liver injury β(r)injury [7,24]. Based on the above analysis of the metabolic
characteristics of liver and liver injury, partial derivatives of both sides of Eq. (5) with respect to
t are defined as

A
[︃
∂Xliver (tk)

∂tk
+
∂Xinjure (tk)

∂tk

]︃
=

[︃
∂Bliver (tk)

∂tk
+
∂Binjure (tk)

∂tk

]︃
(7)

2.2.1. Liver reconstruction based on time difference

To mitigate the interference noise of the signals from the injured region on the liver, a time
difference reconstruction strategy is proposed based on the following assumptions. During the
whole metabolic process of fluorophore in liver, the metabolic rate of liver is higher than that
in liver injury. Additionally, the normal region of liver is much larger than the injured region.
Consequently, the metabolic process is predominantly governed by the normal liver cells, and
changes in the time interval between consecutive frames in the region of liver injury can be
disregarded. According to the above illustrations, the rate of change in liver metabolism is much
higher than that in liver injury, i.e., ∂Xliver (tk)

∂tk ≫
∂Xinjure (tk)

∂tk . Therefore, the change in liver injury is
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ignored. As a result, Eq. (7) can be re-written as

A
∂Xliver (tk)

∂tk
=
∂Bliver (tk)

∂tk
(8)

Considering the morphological recovery and extensive target reconstruction of liver, the
objective function of Eq. (8) is solved by the reweighted L2-norm regulation method [28]:

argmini=1,...,k
1
2

∥︁∥︁∥︁∥︁A (︃
∂X
∂t

)︃
liver

−

(︃
∂B
∂t

)︃
liver

∥︁∥︁∥︁∥︁2

2
+ λliver

(︃
∂X
∂t

)︃T

liver
L
(︃
∂X
∂t

)︃
liver

(9)

where L is a structural prior obtained from the distance between nodes [29].

2.2.2. Liver region monitoring based on energy difference

As mentioned above, according to the compartmental model of the normal liver, when the
derivative of Eq. (6) is 0 with respect to the liver, we can determine a time that satisfies the criteria
t0 = 1

β−α ln Bβ
Aα , with the highest point of metabolic concentration being Xmax. Therefore, before

and after t0, there are two moments t1 and t2 that satisfy the condition: Xliver (t1) = Xliver (t2).
As the energy of the liver changes faster than that of the injured region, the energy of the injured
region varies at different times, i.e., Xinjury (t1) ≠ Xinjury (t2). Therefore, the difference of the
measured data at time t1 and t2 mainly reflects the different fluorescence agent metabolism
distribution of the injury region, which satisfies

A
(︁
Xt2 − Xt1

)︁
≈ A (∆Xk)injure = Bt2 − Bt1 = ∆B (10)

According to the above equations and considering the sparse distribution of the injury region,
Eq. (10) can be solved by the L1-norm regulation based algorithm as follows:

argmin
1
2
∥︁∥︁A (∆Xk)injure − ∆B(t2−t1)

∥︁∥︁2
2 + λinjure

∥︁∥︁(∆Xk)injure
∥︁∥︁

1 (11)

2.2.3. GRPDA

To achieve three-dimensional reconstruction of both the normal and injury regions, we propose a
general GRPDA based on the classical primal-dual algorithm (PDA) and incorporate all of its
advantages. Within the framework of the GRPDA, two different objective functions (Eqs. (9) and
(11)) are defined as follows:

argmin F (Af ) + R (f ) (12)

where:
F (Af ) =

1
2
∥Af − g∥2

2 (13)

f =
⎧⎪⎪⎨⎪⎪⎩

(∆Xk)injure (for Eq.9)

(∆Xk)liver (for Eq.11)
(14)

g =
⎧⎪⎪⎨⎪⎪⎩
∆B(t2−t1) (for Eq.9)

∆B (for Eq.11)
(15)

R =
⎧⎪⎪⎨⎪⎪⎩
λinjure

∥︁∥︁∥︁∑︁t2
k=t1

(∆Xk)injure

∥︁∥︁∥︁
1
(for Eq.9)

λiver (∆Xk)
T L (∆Xk) (for Eq.11)

(16)
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The saddle point, or primal-dual form of Eq. (12), is

min
f ∈Rq

max
y∈Rq

L(f , y) := R(f ) + ⟨Af , y⟩ − F∗(y) (17)

where y is the coefficient of the Lagrange multiplier term, and F∗ is the Legendre-Fenchel
conjugate of F[30]. Using the convex combination technique [31], the specific expression of
GRPDA with fixed step sizes τ =

√
ψ

√
βE ,σ = βτ and golden ratio ψ = 1.618 is employed to obtain

the optimal solution of Eq. (12). Moreover, the step size ratio β = σ/τ was set as 400 based on
numerical experience. E is the eigenvalue of the system matrix A. The iterative solution process
can be broken down into three steps:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zn =
ψ−1
ψ fn−1 +

1
ψ zn−1, z0 = 0

fn = proxτR
(︁
fn−1 − τATyn−1

)︁
, f0 = 0

yn = proxσF∗ (yn−1 + σAfn) , y0 = −g

(18)

3. Experimental settings

3.1. Numerical simulation

In the numerical simulations, a 3D digital mouse torso atlas with a height of 35 mm was employed
[32], as shown in Fig. 1(a). The 3D digital mouse was divided into muscle, heart, liver, liver injury,
stomach, kidneys, and lungs with specific optical parameters [7,32]. In Fig. 1(b), an irregular
shape with a center of (12 mm, 12 mm,16 mm) represents the liver injury region. The excitation
points, represented by the blue dots, are located one transport mean free path beneath the surface
on the plane. The fluorescence was measured from the opposite side, within a 150o field of view
at Z=16 mm. Fig. 1(e) presents the ICG concentration curves, which simulate various metabolic
processes of ICG in the liver and liver injury regions over a period of 200 minutes. These ICG
curves were generated based on Eq. (6) using the corresponding pharmacokinetic parameters
referenced from [7].

According to the liver metabolism, this study selected five time points (t1=0.6 min, t2=10
min, t3=14 min, t4=57.5 min, and t5=160 min, corresponding to initial period, absorption stage,
metabolic peak, half-life time, and excretion stage, respectively [33]) to display the reconstruction
results. Firstly, to evaluate the feasibility of time difference strategy (T-DS) for recovering
normal liver morphology, the traditional reconstruction framework without using any strategy was
adopted for comparison [34]. To recovery the liver, the L2-norm form of GRPDA (GRPDA-L2)
was employed. In these experiments, DICE was used to evaluate the performance. Secondly, the
energy difference strategy (E-DS) was compared with the feasible region strategy to prove its
feasibility. Considering the sparse distribution of injury, the liver injury region was reconstructed
using the L1-norm form of GRPDA (GRPDA-L1), and the location error (LE) was calculated for
comparison [34]. Further validation of the feasibility of T-EDS was conducted by overlapping
the reconstruction results of liver and liver injury. Thirdly, to verify the universality of our
proposed T-EDS and its applicability across different algorithms, we conducted experiments using
two classical algorithms as baselines: Tikhonov and incomplete variables truncated conjugate
gradient (IVTCG), rather than the efficient GRPDA algorithm.

Finally, we designed three stability experiments: (1) To monitor early liver injury, we reduced
the difference in metabolic rates between normal and injured liver to simulate mild liver injury.
The ICG concentration curve of the metabolic process in the mild liver injury region is shown
by the green curve in Fig. 1(e). Compared with the red curve, the difference between liver and
liver injury metabolism is reduced. (2) We also considered a larger injury region to monitor liver
injury regions of different shapes. In Fig. 1(c), the irregular shape with a center of (15 mm,12
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Fig. 1. Schematic diagram of the simulation model. (a) Torso of the mouse atlas model.
(b)-(d) 3-D Digimouse model used for simulations. The blue points represent the excitation
point source locations. (e) ICG concentration curves simulating the metabolic processes of
ICG in liver and liver injury.

mm,16 mm) represents a larger liver injury region. (3) We set up two injury regions with different
sizes to monitor multiple liver injury regions. In Fig. 1(c), the two irregular shapes with centers
of (14 mm,11 mm,15.5 mm) and (23.5 mm, 12 mm, 14.5 mm) represent two liver injury regions of
different sizes.

3.2. in vivo experiment

The animal experiments conducted in this study complied with the ethical standards for animal
welfare and were approved by the Animal Ethics Committee of the Northwest University of
China. For the in vivo imaging experiments, a BKS-db mouse weighing approximately 35 g
with fatty liver was fixed on the rotation stage of an integrated FMT/micro-CT system and
anesthetized during the experiments. The excitation source was obtained by a continuous-wave
semiconductor laser at 750 nm with a power of 450 mW, and fluorescence imaging was achieved
using an 840 nm emission filter. A bolus of ICG (0.1 mL, 50 µg/mL) was injected into the tail
vein before the fluorescent imaging. To ensure high-quality imaging, low exposure time (0.01 s),
high shift speed (12.9 us), and high-speed readout rate (10 MHz at 16 −bit) were employed to
restrain readout noise and shifting noise. During the acquisition process, the electron multiplying
charge coupled device (EMCCD) camera was cooled to −80◦C to reduce effects of thermal noise
effects. Fluorescent images were captured continuously from the mouse at 6 seconds intervals
for 20 hours to monitor the metabolic process of ICG in the liver. After the optical imaging,
a hepatobiliary contrast agent (Fenestra LC) was slowly intravenously injected with a dosage
of 15 mL/kg body weight through the abdominal cavity to enhance the anatomical structure of
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the liver in micro-CT imaging. After 60 minutes of contrast agent injection, the mouse was
immobilized and scanned using an X-ray source with a micro-focused cone beam (L9181-02,
Hamamatsu Photonics, Hamamatsu Japan). In the X-ray scanning, the system was operated
at a source voltage of 90 kV and power of 27 W. An X-ray flat-panel detector (C7942CA-22,
Hamamatsu Photonics, Hamamatsu Japan), employed in high-resolution CT imaging, was used
to obtain a total of 600 X-ray projections with an interval of 0.6◦ and integrating time of 0.5
seconds. The 3D anatomical structures were segmented from the CT data [35], and the major
organs, including heart, lungs, liver, stomach, kidneys, and muscle, were segmented using Amria
5.2 (Amria, Visage Imaging, Australia), as shown in Fig. 2(a). Fig. 2(b) shows the energy signals
collected within 20 hours, and the signal fitting results is depicted by the blue curve, reflecting
the metabolic pattern of ICG in the mouse. Five representative frames at 6, 25, 138, 569, and
996 minutes were selected. Fig. 2(c) presents the corresponding fluorescence images captured
by the CCD camera at these time points. Additionally, Fig. 2(d) illustrates the measured data
mapped onto the 3D surface of the mouse torso.

Fig. 2. Images of metabolism in mouse with fatty liver. (a) 3D anatomical structure
segmentation from CT data. (b) Energy signals collected within 20 hours. (c) Fluorescent
images of five representative frames. (d) Measurements mapped onto the 3D surface of the
mouse torso.
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4. Results

4.1. Simulation study

4.1.1. Liver reconstruction based on time difference

For comparing the liver morphology, the ground truth, reconstructed images of our proposed
strategy, and traditional reconstruction images without T-DS are shown in Fig. 3(a1)-(a5),
(b1)-(b5), and (c1)-(c5), respectively. Furthermore, DICE curves were plotted to evaluate the
morphological recovery ability, as shown in Fig. 3(d). From Fig. 3(b1) - (b5), it can be observed
that the liver contour is well-reconstructed at all five time points when using the T-DS, and the
image quality is good, with minimal noise and closely resembling the ground truth. Moreover,
the reconstructed energy changes follow the metabolic laws and are consistent with the real
situation. Due to the presence of minor heterogeneity, the energy distribution was concentrated
in the center of the liver. However, overall high morphological recovery ability was guaranteed.
The DICE coefficient in Fig. 3(d) was approximately 0.78, which further demonstrates the high
degree of morphological recovery achieved using the T-DS, reflecting the metabolic process of
the probe in the liver over time.

Fig. 3. Ground truth and reconstruction tomographic images of liver at five time points: (a1)-
(a5) Ground truth of liver section corresponding to five time points. (b1)-(b5) Reconstruction
results of five time points using T-DS. (c1)-(c5) Results of five time points without using
T-DS. Moreover, in the transverse view, the white line indicates the actual positions of the
contour of the digital mouse and contour of the mouse liver for the slice at z=16mm. (d)
Curves of DICE obtained with and without the proposed T-DS for liver dynamic monitoring.

By contrast, the traditional reconstruction method, which is not based on the T-DS, can
only approximately reconstruct the liver contour, as shown in Fig. 3(c1)-(c5). However, the
reconstructed region exhibits a significant amount of discrete noise, leading to an uneven
distribution of energy and poor continuity. The energy is predominantly concentrated in three
regions near the center of the liver, with notably higher values observed at 14, 57, and 160 minutes.
In addition, before the peak of the metabolic process, it was evident that the reconstruction results
exhibit poor morphological recovery with significant loss of shape information, as shown in
Fig. 3(c1) and (c2). The quantitative results in Fig. 3(d) further confirm the above statement, and
the DICE of the reconstruction results are generally small, particularly in the first 20 minutes.
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4.1.2. Liver region monitoring based on energy difference

Fig. 4 shows the ground truth, reconstructed images using our proposed E-DS, and traditional
reconstruction results without using the E-DS at the corresponding five time points. Additionally,
the LE curves of the reconstructed injured region compared to the ground truth are also shown in
Fig. 4(d). These results obtained using the E-DS accurately capture the injured region at five time
points and reflect the temporal changes in energy. In general, the quantitative results presented in
Fig. 4(d) show that for 200 minutes of monitoring the injured liver region, the reconstruction
results exhibit sparsity and achieve a satisfactory LE of 0.6066 mm, which is acceptable. Only
minimal artifacts are observed, specifically at the half-life (57 minutes) and at 160 minutes.

Fig. 4. Ground truth and reconstruction tomographic images of liver injury. (a1)-(a5)
Ground truth of liver injury section corresponding to five time points. (b1)-(b5) Results
of five time points using E-DS. (c1)-(c5) Results of five time points with feasible region
strategy. (d) LE curves derived from the reconstruction results using E-DS and feasible
region strategy in liver injury under dynamic monitoring.

In contrast, Fig. 4(c1)-(c5) demonstrate that the feasible region strategy only reflects the
energy change trend over time without successfully reconstructing the liver injury region at these
five time points. The reconstructed images show a considerable presence of artifacts and lack
of sparsity. Moreover, there was a noticeable difference between the reconstructed and actual
positions, particularly in the early and late stages of metabolism. The quantitative results in
Fig. 4(d) further confirm the above statement. The LE of the feasible region strategy was greater
than 1.5 mm at all time points, especially in the beginning and end stages of metabolism, with
location errors reaching 5 mm and 3.5 mm, respectively.

4.1.3. Overlap between normal and injured liver regions

As shown in Figs. 3 and 4, we also overlapped the normal and injured liver region reconstruction
results. Figs. 5(c1)-(c5)and 5(d1)-(d5) display the three-dimensional(3D) images and cross-
sectional images (at Z=16mm) at five time points using the T-EDS, respectively. From the 3D
view, the reconstruction results of T-EDS clearly differentiate between normal and injured liver
regions, with the reconstructed energy confined within the liver contour. From the cross-sectional
view, the reconstructed energy shows a slight unevenness and is slightly more concentrated at the
center of the liver compared to the ground truth. In addition, the image is accompanied by a
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small number of artifacts at the half-life (57 minutes). In contrast, Figs. 5(e1)-(e5) and 5(f1)-(f5)
show the 3D and cross-sectional overlapping images obtained at five time points without using
the T-EDS (at Z=16 mm). From the 3D view, the reconstructed energy is mainly concentrated in
three regions near the center of the liver, showing uneven energy distribution and poor continuity.
However, the normal and injured liver regions cannot be distinguished due to mutual interference
between the signals from the cross-sectional and 3D images. In summary, the proposed T-EDS
can effectively distinguishing between normal and injured liver regions and accurately reflect the
different metabolic characteristics of the probes injected into the normal and injured parts of the
liver. These features are beneficial for clinical applications of this method.

Fig. 5. Ground truth and reconstruction results by GRPDA at five time points. (a1)-(a5)
Ground truth of 3D images. (b1)-(b5) Ground truth of cross-sectional images. (c1)-(c5) 3D
images of the reconstruction results with T-EDS. (d1)-(d5) Cross-sectional images of the
reconstruction results with T-EDS. (e1)-(e5) 3D images of the reconstruction results without
T-EDS. (f1)-(f5) Cross-sectional images of the reconstruction results without T-EDS.

4.1.4. Robustness experiments

In method section and previous simulations, the proposed GRPDA can be applied to reconstruct
the normal and injured regions simultaneously. To verify the universality of our proposed T-EDS,
we replaced the GRPDA-L2 algorithm with Tikhonov for liver recovery based on T-DS. Besides
that, the IVTCG based on the L1-norm was adopted to reconstruct the injured region using
the E-DS. For quantitative comparison, only the liver and liver injury reconstruction results
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at the metabolic peak are depicted in 3D and cross-sectional views (at Z=16 mm), as shown
in Fig. 6(a1)-(a5) and Fig. 6(b1)-(b5), respectively. The intensity distribution curves along
the x, y, and z-axes, passing through the center of the injury region (12mm, 12mm, 16mm),
are depicted in Fig. 6(c), (d), and (e), respectively. It was observed that the T-EDS based
on different reconstruction algorithms can clearly reconstruct the normal and injured regions,
producing acceptable results that indicate the robustness of the proposed strategy. Specifically,
from Fig. 6 (b2, b4) and (b3, b5), it can be concluded that the reconstructed liver through
GRPDA-L2 shows better morphological recovery ability than Tikhonov. Moreover, it is evident
that GRPDA-L1 exhibits higher positioning accuracy than IVTCG in reconstructing the liver
injury region. From the perspectives of Fig. 6 (b2,b3), it more closely resembles the ground truth
than that of Fig. 6 (b4,b5). Moreover, the liver-injury monitoring performance of the combination
of GRPDA-L2+GRPDA-L1 surpasses those of the other three combinations. Conversely, the
combination of Tikhonov+IVTCG produced the worst results among the four combinations.
These above conclusions can also be confirmed from Fig. 6(c)-(e). From the ground truth (black
line in the figure), the peak and plateau regions represent the injured and normal liver regions,
respectively. The tendency of the red dashed line is closely aligned with the black curve in both
the peak and plateau regions, while the peak region of IVTCG and plateau region of Tikhonov
show the slight positional deviation along the x, y and z-axes. In summary, the comparison results
highlight that the proposed T-EDS based on GRPDA can significantly improve the accuracy of
reconstruction with a high morphological recovery ability and good robustness.

4.2. Stability experiments

Figure 7(a)-(i) show the 3D and cross-sectional images (at Z=16mm) obtained at five time points
using the T-EDS in three stability experiments. To further validate the reconstruction performance
of our proposed strategy, we quantified the localization accuracy and morphology recovery
performance using the LE and DICE indexes, as shown by the two box plots in Fig. 7(m) and
Fig. 7(n), respectively. In the early stages of the injury, we observed that the sparse injured region
can still be monitored, and the quantitative results are acceptable. However, compared to the case
with significant metabolic differences, this scenario is more challenging, resulting in a slight
decline, especially in the early (0.6 minutes) and late stages (160 minutes) of the metabolism,
where the LE is 1.6 mm. Moreover, for the large liver injury region, apart from small artifacts
at 0.6 minutes (Fig. 7(g1)), the reconstruction accuracy remains high throughout the entire
200 minutes of liver injury monitoring. Monitoring multiple injured regions in a liver is more
challenging because of signal interference between the injured regions. However, the proposed
strategy can clearly distinguish between two injured regions throughout the metabolic process,
yielding a satisfactory result with an average DICE greater than 0.7. It is worth noting that the
LE slightly increases because of deviations in the reconstructed intensity of the metabolism 10
minutes. Overall, our proposed T-EDS shows satisfactory stability and meets basic application
requirements.

4.3. in vivo experiment results

In the in vivo experiment, CT/MRI imaging could not reveal the injured regions in the liver.
Therefore, we performed dissected the liver as a standard procedure, as illustrated in Fig. 8(a).
To validate the effectiveness of our proposed T-EDS, we utilized 2D photographs of the dissected
liver, discrete point cloud data obtained from the CT images of the dissected liver, and the whole in
vivo mouse for registration. Firstly, the blue circular dashed line in Fig. 8(a) represents the region
of the fatty liver, characterized by a darker color compared to normal liver tissue. Important
reference points around the injured regions are marked as a-e. Based on the 2D-3D radiological
changes, five corresponding feature points are plotted on the 3D mesh of the dissected liver in
Fig. 8(b). Finally, we conducted cloud point registration using the classical Iterative Closest
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Fig. 6. Results of robustness experiments. (a1)-(a5) 3D images of ground truth and
reconstructed results under different algorithm combinations. (b1)-(b5) Cross-sectional
images of ground truth and reconstructed results under different algorithm combinations.
(c-e) Intensity distribution of the ground truth and reconstruction results along x, y and z-axe.
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Point approach to find the five important marker points on the 3D mesh of the whole in vivo
mouse, as depicted in Fig. 8(c). These five reference points are also marked in Figs. 8(d) and (e)
to evaluate the liver injury monitoring results. Figs. 8(d1) - (d5) demonstrate the reconstruction
results obtained using the T-EDS at these five time points. The reconstructed ICG distribution is
confined within the liver contour, and the ICG accumulated in the injury regions can be clearly
distinguished from the hepatic ICG uptake. Moreover, the ICG concentration first increases and
then decreases in accordance with the expected metabolic pattern. Furthermore, the reconstructed
injury regions shown in red are all concentrated near the five marked points, without distribution
in other positions, which is consistent with Fig. 8(a). Conversely, Figs. 8(e1)-(e5) show the
results obtained without using the T-EDS and indicate that the reconstructed ICG distribution
slightly extends beyond the liver contour. The injured regions are distributed around these five
marked points as well as converge in the anterior surface of the liver, indicating a significant
difference from the results shown in Fig. 8(a). These findings further highlight the significance
and effectiveness of the proposed T-EDS in obtaining morphological information and accurately
tracking the in vivo position of fluorescent probe distribution.

Fig. 7. 3D and cross-sectional images of the reconstructed results using the T-EDS in three
stability experiments. (a)-(d), (e)-(h), and (i)-(l) represent the reconstructed results at five
time points in the case of early liver injury, larger-sized injured region, and two injured
regions, respectively. (m) and (n) are box plots of LE and DICE.
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Fig. 8. Photograph, 3D images, and reconstructed results of fatty liver in the mouse after
dissection.(a) Photograph of the fatty liver in the mouse after dissection. (b) 3D visualization
corresponding to (a). (c) Visualization of fatty liver over the entire mouse. (d1)-(d5)
Reconstruction results with T-EDS at five time points. (e1)-(e5) Reconstruction results
without T-EDS at five time points.
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5. Discussion and conclusion

As a promising preclinical imaging technique, DFMT has attracted considerable attention in
the fields of imaging theory, acquisition equipment, and biomedical applications. However,
due to the severe ill-posedness of inverse problems and the interference of signals between the
injured region and normal liver, early liver injury monitoring using DFMT is still challenging in
biological applications.

In this study, we proposed a novel difference strategy based on time and energy, which
effectively distinguished between normal and injured tissues in mouse liver to achieve early liver
injury monitoring. Firstly, we proposed the T-DS, which can effectively overcome the interference
between signals from the injured region and normal liver and can recover the morphology of the
liver. Then, considering the differences between the metabolic characteristics in the normal and
injured liver tissues, an E-DS was employed to reconstruct the liver injury region. Moreover,
considering the extensive target reconstruction of the liver and sparse distribution of the injured
region, a universal GRPDA was employed to solve two distinct optimization models. This
algorithm enabled the recovery of the morphologies of both the normal liver and sparse injured
region.

The accuracy and stability were evaluated through numerical simulations. The results showed
that the E-DS could significantly improve the degree of morphological recovery of liver, with an
average DICE of 0.78 (see Fig. 4), and T-DS improved the accuracy of liver injury localization
with a satisfactory LE of 0.6066 mm (seen in Fig. 5). Overall, high morphological recovery
ability could be guaranteed, accurately capturing the liver injury region. Furthermore, the
results of robustness experiments not only validated the applicability and generality of the
proposed strategy with different reconstruction algorithms, but also demonstrated the superiority
of GRPDA. Finally, three sets of stability experiments further validated the effectiveness of our
proposed strategy in more challenging situations; these proposed strategy yielded satisfactory
results and fulfilled basic application requirements. In the in vivo experiments, a fatty liver mouse
model was developed to further validate the practicability of the proposed T-EDS. The in vivo
results demonstrated that the proposed strategy could recover shape of the entire liver profile
with a high accuracy, and the spatial resolution for detecting fatty liver tissues improved. It is
important to note that our in vivo experiments did not involve accurate quantitative research on the
distribution of fatty liver tissues. We recognize the significance of conducting such quantitative
investigations in the future work by leveraging the advantages of other imaging modalities, such
as magnetic particle imaging [36], positron emission tomography, and single photon emission
computed tomography [37]. Besides that, some reliable contrast mechanisms, such as lifetime
and FRET, were not used in our research. The proposed T-EDS was developed to distinguish
normal and injured liver tissue geometrically, rather than to quantify the metabolic processes of
the liver and injured regions, which is limited by imaging equipment and quantitative instruments.
Our optical image device (EMCCD) cannot be used to compute the lifetime of the fluorescence
probe. Therefore, further studies will be conducted to explore optical calibration techniques
(such as the sphere integration method) to address this issue. In addition, quantitative research on
cell/fluorescence signal/probe quantum yield and device upgrades will be conducted in the future.

We believe that the proposed strategy can provide a new perspective to distinguish normal
and injured tissues in liver, enabling early liver injury monitoring. Further, it can broaden the
applicability of DFMT in various preclinical processes and facilitate the theoretical development
of optical molecular tomography.
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